
© Copyright Ian D. Romanick 2009

28-October-2009

VGP351 – Week 4

⇨ Agenda:
­ Physical theory of light
­ Lighting models for graphics
­ Shading models for graphics
­ Types of lights

© Copyright Ian D. Romanick 2009

28-October-2009

Lighting

⇨ Lighting, in graphics, is the art of approximately
simulating the manner in which light interacts
with materials

© Copyright Ian D. Romanick 2009

28-October-2009

Lighting

⇨ Lighting, in graphics, is the art of approximately
simulating the manner in which light interacts
with materials

⇨ Remember:
“Light makes right.”

– Andrew Glassner

“If it looks good, it is good.”

– Michael Abrash

© Copyright Ian D. Romanick 2009

28-October-2009

Lighting

⇨ Two fundamental theories of how light works
­ Wave theory of light – Christiaan Huygens proposed

in 1690 that light is emitted in all directions as a series
of waves

© Copyright Ian D. Romanick 2009

28-October-2009

Double-Slit Experiment

⇨ Thomas Young's 1801 double-slit experiment
supports the wave theory

­ Light emitted through two thin slits causes alternating
light and dark bands projected on a surface

Image from http://en.wikipedia.org/wiki/File:Young_Diffraction.png

http://en.wikipedia.org/wiki/File:Young_Diffraction.png

© Copyright Ian D. Romanick 2009

28-October-2009

Lighting

⇨ Two fundamental theories of how light works
­ Wave theory of light – Christiaan Huygens proposed

in 1690 that light is emitted in all directions as a series
of waves

­ Particle theory of light – Ibn al-Haytham proposed in
1021 that light beams are made of minuscule energy
particles that travel in a straight line at a fixed speed

Ibn al-Haytham

http://en.wikipedia.org/wiki/Ibn_al-Haytham

© Copyright Ian D. Romanick 2009

28-October-2009

Particle Theory – Reflection

⇨ Particle theory of light correctly predicts
reflection

n

l

r





© Copyright Ian D. Romanick 2009

28-October-2009

Particle Theory – Reflection

⇨ Particle theory of light correctly predicts
reflection

­ This perfect, mirror-like reflection is called specular
reflection




n

l

r

© Copyright Ian D. Romanick 2009

28-October-2009

Particle Theory – Reflection

⇨ What about “rough” surfaces?
­ Light rays scatter in all directions
­ This is called diffuse reflection

l n

© Copyright Ian D. Romanick 2009

28-October-2009

Wave Theory – Refraction

⇨ When light leaves one material and enters
another, it changes direction

­ At the interface the speed changes, and the light
bends

n

l

r

q

Air Water

© Copyright Ian D. Romanick 2009

28-October-2009

Wave Theory – Refraction

Image from http://en.wikipedia.org/wiki/File:Refraction-with-soda-straw.jpg

http://en.wikipedia.org/wiki/File:Refraction-with-soda-straw.jpg

© Copyright Ian D. Romanick 2009

28-October-2009

Lighting

⇨ Two fundamental theories of how light works
­ Wave theory of light – Christiaan Huygens proposed

in 1690 that light is emitted in all directions as a series
of waves

­ Particle theory of light – Ibn al-Haytham proposed in
1021 that light beams are made of minuscule energy
particles that travel in a straight line at a fixed speed

⇨ So... which is it?
­ It exhibits both characteristics depending on the

situation

­ See also
http://dir.salon.com/story/comics/tomo/2004/07/06/tomo/

Ibn al-Haytham

http://dir.salon.com/story/comics/tomo/2004/07/06/tomo/
http://en.wikipedia.org/wiki/Ibn_al-Haytham

© Copyright Ian D. Romanick 2009

28-October-2009

Computer Lighting Models

⇨ Every model is a simplification of the physical
phenomena

­ We'll look at three simple models today:
­ Lambertian reflectance
­ Phong reflection model
­ Blinn-Phong reflection model

­ We'll look at a number of more complex models next
term

© Copyright Ian D. Romanick 2009

28-October-2009

Lambertian Reflectance

⇨ Reflection from ideal diffuse reflectors obeys
Lambert's Cosine Law:

The radiant intensity reflected is
proportional to the cosine between
surface normal and the incoming
light

© Copyright Ian D. Romanick 2009

28-October-2009

Lambertian Reflectance

n

l

© Copyright Ian D. Romanick 2009

28-October-2009

Lambertian Reflectance

n
l

© Copyright Ian D. Romanick 2009

28-October-2009

Lambertian Reflectance

⇨ Reflection from ideal diffuse reflectors obeys
Lambert's Cosine Law:

id=
l⋅n

∣l∣×∣n∣
∗cd∗ld

© Copyright Ian D. Romanick 2009

28-October-2009

Lambertian Reflectance

⇨ Reflection from ideal diffuse reflectors obeys
Lambert's Cosine Law:

Diffuse color of the
surface

Intensity of the lightVector from the
surface to the
light

id=
l⋅n

∣l∣×∣n∣
∗cd∗ld

© Copyright Ian D. Romanick 2009

28-October-2009

Lambertian Reflectance

⇨ Reflection from ideal diffuse reflectors obeys
Lambert's Cosine Law:

id=
max n⋅l ,0

∣n∣∣l∣
∗cd∗ld

Why is this necessary?

© Copyright Ian D. Romanick 2009

28-October-2009

Lambertian Reflectance

⇨ Reflection from ideal diffuse reflectors obeys
Lambert's Cosine Law:

Because nl can be
negative. Negative
light is nonsense!

id=
max n⋅l ,0

∣n∣∣l∣
∗cd∗ld

© Copyright Ian D. Romanick 2009

28-October-2009

Lambertian Reflectance

⇨ Reflection from ideal diffuse reflectors obeys
Lambert's Cosine Law:

⇨ Note that the viewer is not involved at all in this
calculation

­ Hence, diffuse lighting is view independent

id=
max n⋅l ,0

∣n∣∣l∣
∗cd∗ld

© Copyright Ian D. Romanick 2009

28-October-2009

Phong Reflectance

⇨ Adds a mirror-like reflection factor to the diffuse
factor

is= r⋅v∣r∣∣v∣
s

∗cs∗ls

n

l

rv

© Copyright Ian D. Romanick 2009

28-October-2009

Phong Reflectance

⇨ Adds a mirror-like reflection factor to the diffuse
factor

­ n, v, and l are known in advance, but r is not...but it
can be calculated in a few steps

n

l

rv

© Copyright Ian D. Romanick 2009

28-October-2009

Phong Reflectance

⇨ Adds a mirror-like reflection factor to the diffuse
factor

­ n, v, and l are known in advance, but r is not...but it
can be calculated in a few steps

Proj
n
(l)

n

l

rv

© Copyright Ian D. Romanick 2009

28-October-2009

Phong Reflectance

⇨ Adds a mirror-like reflection factor to the diffuse
factor

­ n, v, and l are known in advance, but r is not...but it
can be calculated in a few steps

2 * Proj
n
(l)

n

l

rv

© Copyright Ian D. Romanick 2009

28-October-2009

Phong Reflectance

⇨ Adds a mirror-like reflection factor to the diffuse
factor

­ n, v, and l are known in advance, but r is not...but it
can be calculated in a few steps

2 * Proj
n
(l) - l

n

l

rv

© Copyright Ian D. Romanick 2009

28-October-2009

Phong Reflectance

⇨ Adds a mirror-like reflection factor to the diffuse
factor

­ n, v, and l are known in advance, but r is not...but it
can be calculated in a few steps

r=
2n⋅l 
∣n∣∣l∣

n−l

is= r⋅v∣r∣∣v∣
s

∗cs∗ls

© Copyright Ian D. Romanick 2009

28-October-2009

Phong Reflectance

⇨ Adds a mirror-like reflection factor to the diffuse
factor

­ n, v, and l are known in advance, but r is not...but it
can be calculated in a few steps

­ This is a lot of math... very expensive to calculate.

r=
2n⋅l 
∣n∣∣l∣

n−l

is= r⋅v∣r∣∣v∣
s

∗cs∗ls

© Copyright Ian D. Romanick 2009

28-October-2009

Blinn-Phong Reflectance

⇨ James Blinn improved Phong's model in 1977
­ Observed that as vr increases, so does nh, where h

is a vector half way between v and l

h
n

l

rv

© Copyright Ian D. Romanick 2009

28-October-2009

Blinn-Phong Reflectance

⇨ James Blinn improved Phong's model in 1977
­ Observed that as vr increases, so does nh, where h

is a vector half way between v and l

h=lv , is= n⋅h∣n∣∣h∣
s

∗cs∗ls
h

n

l

rv

© Copyright Ian D. Romanick 2009

28-October-2009

Shininess

⇨ What is the magic s in
the exponent of both
equations?

r=
2n⋅l 
∣n∣∣l∣

n−l

is= r⋅v∣r∣∣v∣
s

∗cs∗ls

h=lv

is= n⋅h∣n∣∣h∣
s

∗cs∗ls

© Copyright Ian D. Romanick 2009

28-October-2009

Shininess

⇨ What is the magic s in
the exponent of both
equations?

­ Controls the “size” of
the specular highlight

­ As s increases, the
highlight gets smaller

­ The dot-product is always
less than 1.0, so raising it
to some power makes it
smaller faster.

r=
2n⋅l 
∣n∣∣l∣

n−l

is= r⋅v∣r∣∣v∣
s

∗cs∗ls

h=lv

is= n⋅h∣n∣∣h∣
s

∗cs∗ls

© Copyright Ian D. Romanick 2009

28-October-2009

Blinn-Phong vs. Phong

⇨ The Blinn-Phong equation is an approximation of
the Phong equation

­ Yes... an approximation of an approximation

r⋅v 
s
≈ n⋅h 

4 s

© Copyright Ian D. Romanick 2009

28-October-2009

Ambient

⇨ The lighting model so far is a purely direct
lighting model

­ Most real world light bounces off of other objects, and
is call indirect lighting

­ We can account for the background, indirect light by
adding a simple ambient component

⇨ This is the biggest hack of all!

ia=ca∗la

© Copyright Ian D. Romanick 2009

28-October-2009

Shading Models

⇨ We know how to calculate lighting values, but
the question remains: how often do we calculate
it?

© Copyright Ian D. Romanick 2009

28-October-2009

Flat Shading

⇨ Simplest answer: calculate lighting once per
polygon

­ Fast!
­ Depending on the circumstances, the quality may be

good enough...but usually not

© Copyright Ian D. Romanick 2009

28-October-2009

Gouraud Shading

⇨ Calculate lighting once per vertex, interpolate
colors across polygon

­ A little slower: more math, have to do interpolation

© Copyright Ian D. Romanick 2009

28-October-2009

Gouraud Shading

⇨ Calculate lighting once per vertex, interpolate
colors across polygon

­ A little slower: more math, have to do interpolation

For all intents and
purposes, this is free.

© Copyright Ian D. Romanick 2009

28-October-2009

Gouraud Shading

⇨ Calculate lighting once per vertex, interpolate
colors across polygon

­ A little slower: more math, have to do interpolation
­ Looks better
­ Works well for diffuse, but works poorly for specular

© Copyright Ian D. Romanick 2009

28-October-2009

Gouraud Shading

Image from M. Kilgard, “Avoiding 16 Common OpenGL Pitfalls”, 1998.

© Copyright Ian D. Romanick 2009

28-October-2009

Gouraud Shading

Image from M. Kilgard, “Avoiding 16 Common OpenGL Pitfalls”, 1998.

Note the lines
at the polygon
boundaries.
This is called
mach banding.

© Copyright Ian D. Romanick 2009

28-October-2009

Phong Shading

⇨ Next logical step: interpolate lighting
parameters, calculate lighting per pixel

­ Looks much better...doesn't miss the specular
highlight!

­ Much more expensive to calculate
­ Has really only been practical for real-time rendering for the

last couple years
­ Not only requires the lighting to be recalculated per pixel, but

interpolated vectors may need to be re-normalized per pixel

© Copyright Ian D. Romanick 2009

28-October-2009

Phong Shading

© Copyright Ian D. Romanick 2009

28-October-2009

Phong Shading

© Copyright Ian D. Romanick 2009

28-October-2009

Types of Lights

⇨ Several common types of lights used in
graphics:

­ Point light
­ Directional light

­ Also called infinite light

­ Area lights
­ Spot lights

© Copyright Ian D. Romanick 2009

28-October-2009

Point Lights

⇨ Calculate the l vector by subtracting the vertex
position from the light position and normalize the
result

l

n

© Copyright Ian D. Romanick 2009

28-October-2009

Point Lights

⇨ Calculate the l vector by subtracting the vertex
position from the light position and normalize the
result

l

n

© Copyright Ian D. Romanick 2009

28-October-2009

Point Lights

⇨ Calculate the l vector by subtracting the vertex
position from the light position and normalize the
result

l
n

© Copyright Ian D. Romanick 2009

28-October-2009

Point Lights

⇨ Calculate the l vector by subtracting the vertex
position from the light position and normalize the
result

l

nNote how the l vectors become
more parallel as the distance to
the light increases.

© Copyright Ian D. Romanick 2009

28-October-2009

Directional Lights

⇨ As the light becomes infinitely far away, all of the
calculated l vectors become parallel

­ When this happens, we can simplify the math and
treat the light has just a direction

­ Since the direction doesn't change, we don't have to
interpolate it

­ Still have to transform it into the space where lighting will be
calculated

© Copyright Ian D. Romanick 2009

28-October-2009

Area Lights

⇨ Both these models treat lights as infinitesimal
points

­ All real lights have some surface area
­ Lights with larger surface areas are considered

“softer”
­ This results in shadows with smoother boundaries
­ This is why we have frosted light bulbs and lamp shades

instead of bare, clear glass bulbs

­ Techniques exist for handling these sorts of lights, but
they are expensive and (currently) impractical for
most real-time use

­ We'll discuss this more next term

© Copyright Ian D. Romanick 2009

28-October-2009

Spot Light

⇨ Most lights don't emit light in all directions
­ Some range over which the full intensity light is

emitted
­ Some range over which the full intensity light is

emitted
­ This range may be zero

­ Remaining range where no light is emitted

© Copyright Ian D. Romanick 2009

28-October-2009

Spot Light

Full intensity light No light

Partial intensity light

Image, by satanoid, from http://www.everystockphoto.com/photo.php?imageId=673587

http://www.everystockphoto.com/photo.php?imageId=673587

© Copyright Ian D. Romanick 2009

28-October-2009

Spot Light

Full intensity light
No ambient
light

Partial intensity light

Image, by satanoid, from http://www.everystockphoto.com/photo.php?imageId=673587

http://www.everystockphoto.com/photo.php?imageId=673587

© Copyright Ian D. Romanick 2009

28-October-2009

Spot Light

⇨ Need additional light parameters:
­ l

dir
 – direction the light is pointing

­ l
cut

 – Absolute cut-off angle

­ l
exp

 – Exponent for cut-off equation

l

n
l
dir

© Copyright Ian D. Romanick 2009

28-October-2009

Spot Light

i={ ldir⋅−l 
lexp∗iL if  ldir⋅−l cos lcut

0 otherwise

l

n
l
dir

© Copyright Ian D. Romanick 2009

28-October-2009

Distance Attenuation

⇨ The farther a light is from an object, the less light
gets to that object

­ Three separate factors control the attenuation

­ k
c
 – constant attenuation factor

­ k
l
 – Linear attenuation factor

­ k
q
 – Quadratic attenuation factor

d=∣l∣

a=
1

kck ldk qd
2

© Copyright Ian D. Romanick 2009

28-October-2009

Next week...

⇨ Quiz #2
⇨ Bounding volumes

­ Bounding spheres
­ Axis-aligned bounding boxes (AABBs)
­ Oriented bounding boxes (OBBs)
­ Heirarchies of BVs

⇨ More occlusion
­ Hierarchical frustum culling
­ Portal culling

© Copyright Ian D. Romanick 2009

28-October-2009

Legal Statement

This work represents the view of the authors and does not necessarily
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

