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VGP351 – Week 4

⇨ Agenda:
­ Physical theory of light
­ Lighting models for graphics
­ Shading models for graphics
­ Types of lights
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Lighting

⇨ Lighting, in graphics, is the art of approximately 
simulating the manner in which light interacts 
with materials
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Lighting

⇨ Lighting, in graphics, is the art of approximately 
simulating the manner in which light interacts 
with materials

⇨ Remember:
“Light makes right.”

– Andrew Glassner

“If it looks good, it is good.”

– Michael Abrash
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Lighting

⇨ Two fundamental theories of how light works
­ Wave theory of light – Christiaan Huygens proposed 

in 1690 that light is emitted in all directions as a series 
of waves
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Double-Slit Experiment

⇨ Thomas Young's 1801 double-slit experiment 
supports the wave theory

­ Light emitted through two thin slits causes alternating 
light and dark bands projected on a surface

Image from http://en.wikipedia.org/wiki/File:Young_Diffraction.png

http://en.wikipedia.org/wiki/File:Young_Diffraction.png
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Lighting

⇨ Two fundamental theories of how light works
­ Wave theory of light – Christiaan Huygens proposed 

in 1690 that light is emitted in all directions as a series 
of waves

­ Particle theory of light – Ibn al-Haytham proposed in 
1021 that light beams are made of minuscule energy 
particles that travel in a straight line at a fixed speed 

Ibn al-Haytham

http://en.wikipedia.org/wiki/Ibn_al-Haytham
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Particle Theory – Reflection

⇨ Particle theory of light correctly predicts 
reflection
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Particle Theory – Reflection

⇨ Particle theory of light correctly predicts 
reflection

­ This perfect, mirror-like reflection is called specular 
reflection
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l
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Particle Theory – Reflection

⇨ What about “rough” surfaces?
­ Light rays scatter in all directions
­ This is called diffuse reflection

l n
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Wave Theory – Refraction

⇨ When light leaves one material and enters 
another, it changes direction

­ At the interface the speed changes, and the light 
bends

n

l

r

q

Air Water
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Wave Theory – Refraction

Image from http://en.wikipedia.org/wiki/File:Refraction-with-soda-straw.jpg

http://en.wikipedia.org/wiki/File:Refraction-with-soda-straw.jpg
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Lighting

⇨ Two fundamental theories of how light works
­ Wave theory of light – Christiaan Huygens proposed 

in 1690 that light is emitted in all directions as a series 
of waves

­ Particle theory of light – Ibn al-Haytham proposed in 
1021 that light beams are made of minuscule energy 
particles that travel in a straight line at a fixed speed 

⇨ So... which is it?
­ It exhibits both characteristics depending on the 

situation

­ See also 
http://dir.salon.com/story/comics/tomo/2004/07/06/tomo/

Ibn al-Haytham

http://dir.salon.com/story/comics/tomo/2004/07/06/tomo/
http://en.wikipedia.org/wiki/Ibn_al-Haytham


© Copyright Ian D. Romanick 2009

28-October-2009

Computer Lighting Models

⇨ Every model is a simplification of the physical 
phenomena

­ We'll look at three simple models today:
­ Lambertian reflectance
­ Phong reflection model
­ Blinn-Phong reflection model

­ We'll look at a number of more complex models next 
term
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Lambertian Reflectance

⇨ Reflection from ideal diffuse reflectors obeys 
Lambert's Cosine Law:

The radiant intensity reflected is 
proportional to the cosine between 
surface normal and the incoming 
light
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Lambertian Reflectance

n

l
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Lambertian Reflectance

n
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Lambertian Reflectance

⇨ Reflection from ideal diffuse reflectors obeys 
Lambert's Cosine Law:

id=
l⋅n

∣l∣×∣n∣
∗cd∗ld
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Lambertian Reflectance

⇨ Reflection from ideal diffuse reflectors obeys 
Lambert's Cosine Law:

Diffuse color of the 
surface

Intensity of the lightVector from the 
surface to the 
light

id=
l⋅n

∣l∣×∣n∣
∗cd∗ld
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Lambertian Reflectance

⇨ Reflection from ideal diffuse reflectors obeys 
Lambert's Cosine Law:

id=
max n⋅l ,0

∣n∣∣l∣
∗cd∗ld

Why is this necessary?
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Lambertian Reflectance

⇨ Reflection from ideal diffuse reflectors obeys 
Lambert's Cosine Law:

Because nl can be 
negative.  Negative 
light is nonsense!

id=
max n⋅l ,0

∣n∣∣l∣
∗cd∗ld
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Lambertian Reflectance

⇨ Reflection from ideal diffuse reflectors obeys 
Lambert's Cosine Law:

⇨ Note that the viewer is not involved at all in this 
calculation

­ Hence, diffuse lighting is view independent

id=
max n⋅l ,0

∣n∣∣l∣
∗cd∗ld
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Phong Reflectance

⇨ Adds a mirror-like reflection factor to the diffuse 
factor

is= r⋅v∣r∣∣v∣
s

∗cs∗ls

n

l

rv
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Phong Reflectance

⇨ Adds a mirror-like reflection factor to the diffuse 
factor

­ n, v, and l are known in advance, but r is not...but it 
can be calculated in a few steps

n

l

rv
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Phong Reflectance

⇨ Adds a mirror-like reflection factor to the diffuse 
factor

­ n, v, and l are known in advance, but r is not...but it 
can be calculated in a few steps

Proj
n
(l)

n

l

rv
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Phong Reflectance

⇨ Adds a mirror-like reflection factor to the diffuse 
factor

­ n, v, and l are known in advance, but r is not...but it 
can be calculated in a few steps

2 * Proj
n
(l)

n

l

rv
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Phong Reflectance

⇨ Adds a mirror-like reflection factor to the diffuse 
factor

­ n, v, and l are known in advance, but r is not...but it 
can be calculated in a few steps

2 * Proj
n
(l) - l

n

l

rv
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Phong Reflectance

⇨ Adds a mirror-like reflection factor to the diffuse 
factor

­ n, v, and l are known in advance, but r is not...but it 
can be calculated in a few steps

r=
2n⋅l 
∣n∣∣l∣

n−l

is= r⋅v∣r∣∣v∣
s

∗cs∗ls
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Phong Reflectance

⇨ Adds a mirror-like reflection factor to the diffuse 
factor

­ n, v, and l are known in advance, but r is not...but it 
can be calculated in a few steps

­ This is a lot of math... very expensive to calculate.

r=
2n⋅l 
∣n∣∣l∣

n−l

is= r⋅v∣r∣∣v∣
s

∗cs∗ls
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Blinn-Phong Reflectance

⇨ James Blinn improved Phong's model in 1977
­ Observed that as vr increases, so does nh, where h 

is a vector half way between v and l

h
n

l

rv
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Blinn-Phong Reflectance

⇨ James Blinn improved Phong's model in 1977
­ Observed that as vr increases, so does nh, where h 

is a vector half way between v and l

h=lv , is= n⋅h∣n∣∣h∣
s

∗cs∗ls
h

n

l

rv
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Shininess

⇨ What is the magic s in 
the exponent of both 
equations?

r=
2n⋅l 
∣n∣∣l∣

n−l

is= r⋅v∣r∣∣v∣
s

∗cs∗ls

h=lv

is= n⋅h∣n∣∣h∣
s

∗cs∗ls
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Shininess

⇨ What is the magic s in 
the exponent of both 
equations?

­ Controls the “size” of 
the specular highlight

­ As s increases, the 
highlight gets smaller

­ The dot-product is always 
less than 1.0, so raising it 
to some power makes it 
smaller faster.

r=
2n⋅l 
∣n∣∣l∣

n−l

is= r⋅v∣r∣∣v∣
s

∗cs∗ls

h=lv

is= n⋅h∣n∣∣h∣
s

∗cs∗ls
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Blinn-Phong vs. Phong

⇨ The Blinn-Phong equation is an approximation of 
the Phong equation

­ Yes... an approximation of an approximation

r⋅v 
s
≈ n⋅h 

4 s
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Ambient

⇨ The lighting model so far is a purely direct 
lighting model

­ Most real world light bounces off of other objects, and 
is call indirect lighting

­ We can account for the background, indirect light by 
adding a simple ambient component

⇨ This is the biggest hack of all!

ia=ca∗la



© Copyright Ian D. Romanick 2009

28-October-2009

Shading Models

⇨ We know how to calculate lighting values, but 
the question remains:  how often do we calculate 
it?



© Copyright Ian D. Romanick 2009

28-October-2009

Flat Shading

⇨ Simplest answer:  calculate lighting once per 
polygon

­ Fast!
­ Depending on the circumstances, the quality may be 

good enough...but usually not
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Gouraud Shading

⇨ Calculate lighting once per vertex, interpolate 
colors across polygon

­ A little slower: more math, have to do interpolation
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Gouraud Shading

⇨ Calculate lighting once per vertex, interpolate 
colors across polygon

­ A little slower: more math, have to do interpolation

For all intents and 
purposes, this is free.
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Gouraud Shading

⇨ Calculate lighting once per vertex, interpolate 
colors across polygon

­ A little slower: more math, have to do interpolation
­ Looks better
­ Works well for diffuse, but works poorly for specular
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Gouraud Shading

Image from M. Kilgard, “Avoiding 16 Common OpenGL Pitfalls”, 1998.



© Copyright Ian D. Romanick 2009

28-October-2009

Gouraud Shading

Image from M. Kilgard, “Avoiding 16 Common OpenGL Pitfalls”, 1998.

Note the lines 
at the polygon 
boundaries.
This is called 
mach banding.
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Phong Shading

⇨ Next logical step:  interpolate lighting 
parameters, calculate lighting per pixel

­ Looks much better...doesn't miss the specular 
highlight!

­ Much more expensive to calculate
­ Has really only been practical for real-time rendering for the 

last couple years
­ Not only requires the lighting to be recalculated per pixel, but 

interpolated vectors may need to be re-normalized per pixel
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Phong Shading
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Phong Shading
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Types of Lights

⇨ Several common types of lights used in 
graphics:

­ Point light
­ Directional light

­ Also called infinite light

­ Area lights
­ Spot lights
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Point Lights

⇨ Calculate the l vector by subtracting the vertex 
position from the light position and normalize the 
result

l

n
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Point Lights

⇨ Calculate the l vector by subtracting the vertex 
position from the light position and normalize the 
result

l

n
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Point Lights

⇨ Calculate the l vector by subtracting the vertex 
position from the light position and normalize the 
result

l
n
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Point Lights

⇨ Calculate the l vector by subtracting the vertex 
position from the light position and normalize the 
result

l

nNote how the l vectors become 
more parallel as the distance to 
the light increases.
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Directional Lights

⇨ As the light becomes infinitely far away, all of the 
calculated l vectors become parallel

­ When this happens, we can simplify the math and 
treat the light has just a direction

­ Since the direction doesn't change, we don't have to 
interpolate it

­ Still have to transform it into the space where lighting will be 
calculated
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Area Lights

⇨ Both these models treat lights as infinitesimal 
points

­ All real lights have some surface area
­ Lights with larger surface areas are considered 

“softer”
­ This results in shadows with smoother boundaries
­ This is why we have frosted light bulbs and lamp shades 

instead of bare, clear glass bulbs

­ Techniques exist for handling these sorts of lights, but 
they are expensive and (currently) impractical for 
most real-time use

­ We'll discuss this more next term
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Spot Light

⇨ Most lights don't emit light in all directions
­ Some range over which the full intensity light is 

emitted
­ Some range over which the full intensity light is 

emitted
­ This range may be zero

­ Remaining range where no light is emitted
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Spot Light

Full intensity light No light

Partial intensity light

Image, by satanoid, from http://www.everystockphoto.com/photo.php?imageId=673587

http://www.everystockphoto.com/photo.php?imageId=673587
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Spot Light

Full intensity light
No ambient 
light

Partial intensity light

Image, by satanoid, from http://www.everystockphoto.com/photo.php?imageId=673587

http://www.everystockphoto.com/photo.php?imageId=673587
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Spot Light

⇨ Need additional light parameters:
­ l

dir
 – direction the light is pointing

­ l
cut

 – Absolute cut-off angle

­ l
exp

 – Exponent for cut-off equation

l

n
l
dir
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Spot Light

i={ ldir⋅−l 
lexp∗iL if  ldir⋅−l cos lcut

0 otherwise

l

n
l
dir
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Distance Attenuation

⇨ The farther a light is from an object, the less light 
gets to that object

­ Three separate factors control the attenuation

­ k
c
 – constant attenuation factor

­ k
l
 – Linear attenuation factor

­ k
q
 – Quadratic attenuation factor

d=∣l∣

a=
1

kck ldk qd
2
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Next week...

⇨ Quiz #2
⇨ Bounding volumes

­ Bounding spheres
­ Axis-aligned bounding boxes (AABBs)
­ Oriented bounding boxes (OBBs)
­ Heirarchies of BVs

⇨ More occlusion
­ Hierarchical frustum culling
­ Portal culling
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Legal Statement

This work represents the view of the authors and does not necessarily 
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other 
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service 
marks of others.
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